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Abstract

We investigate the adaptation of cooperating strategies in an iterated Prisoner’s Dilemma

(IPD) game. The deterministic IPD describes the interaction of N agents spatially distributed

on a lattice, which are assumed to only interact with their four neighbors, hence, local config-

urations are of great importance. Particular interest is in the spatial-temporal distributions

of agents playing different strategies, and their dependence on the number of consecutive en-

counters ng during each generation. We show that above a critical ng, there is no coexistence

between agents playing different strategies, while below the critical ng coexistence is found.

1 Introduction

The evolution of species, whether in the natural or the artificial environment heavily depends on

their adaptation capabilities. In a biological or socio-economic context, adaptation often implies

the choice of the right strategic behavior, in order to increase the chance of survival. To reduce

the risk of making the wrong decision, it often seems to be appropriate just to copy the successful

strategies of others. Such an imitation behavior is widely found in biology, but also in cultural

evolution.

A similar kind of local imitation behavior will be used in this paper to explain the spatial

evolution of strategies in a multi-agent system. We consider a system of N agents spatially

distributed on a square lattice, so that each lattice cite is occupied by just one agent. Each

agent i is characterized by two state variables, (i) its position r i on the lattice, and (ii) a discrete

variable θi, describing its possible actions, as specified in Sect. 3. Agents are assumed to directly

interact only with their 4 nearest neighbors a number of ng times. In order to describe the

local interation, we use the so-called iterated Prisoner’s Dilemma (IPD) game – a paradigmatic

example [1, 4, 11] well established in evolutionary game theory with a broad range of applications

in economics, political science, and biology.

In the simple Prisoner’s Dilemma (PD) game, each agent i has two options to act in a given

situation, to cooperate (C), or to defect (D). Playing with agent j, the outcome of this interaction
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depends on the action chosen by agent i, i.e. C or D, without knowing the action chosen by the

other agent participating in a particular game. This outcome is described by a payoff matrix,

which for the 2-person game, i.e. for the interaction of only two agents, has the following form:

C D

C R S

D T P

(1)

In PD games, the payoffs have to fulfill the following two inequalities:

T > R > P > S 2R > S + T (2)

The known standard values are T = 5, R = 3, P = 1, S = 0. This means in a cooperating

environment, a defector will get the highest payoff. From this, the abbreviations for the different

payoffs become clear: T means (T)emptation payoff for defecting in a cooperative environment,

S means (S)ucker’ payoff for cooperating in a defecting environment, R means (R)eward payoff

for cooperating in a likewise environment, and P means (P)unishment payoff for defecting in a

likewise environment.

In any one round (or “one-shot”) game, choosing action D is unbeatable, because it rewards the

higher payoff for agent i whether the opponent chooses C or D. At the same time, the payoff for

both agents i and j is maximized when both cooperate. But in a consecutive game played many

times, both agents, by simply choosing D, would end up earning less than they would earn by

collaborating. Thus, the number of games ng two agents play together becomes important. For

ng ≥ 2, this is called an iterated Prisoner’s Dilemma (IPD). It makes sense only if the agents

can remember the previous choices of their opponents, i.e. if they have a memory of nm ≤ ng −1

steps. Then, they are able to develop different strategies based on their past experiences with

their opponents, which is described in the following.

2 Agent’s Strategies

In this paper, we assume only a one-step memory of the agent, nm = 1. Based on the known

previous choice of its opponent, either C or D, agent i has then the choice between eight different

strategies. Following a notation introduced by Nowak and Sigmund [9], these strategies are coded

in a 3-bit binary string [Io|Ic Id] which always refers to collaboration. The first bit represents

the initial choice of agent i: it is 1 if agent i collaborates, and 0 if it defects initially. The two

other values refer always to the previous choice of agent j. Ic is set to 1 if agent i chooses to

collaborate given that agent j has collaborated before and 0 otherwise. Id is similarily set to 1

if agent i chooses to collaborate given that agent j has defected before and 0 otherwise. For the
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s Strategy Acronym Bit String

0 suspicious defect sD 000

1 suspicious anti-Tit-For-Tat sATFT 001

2 suspicious Tit-For-Tat sTFT 010

3 suspicious cooperate sC 011

4 generous defect gD 100

5 generous anti-Tit-For-Tat gATFT 101

6 generous Tit-For-Tat gTFT 110

7 generous cooperate gC 111

Table 1: Possible agent’s strategies using a one-step memory.

deterministic case discussed in this paper, the eight possible strategies (s = 0, 1, . . . , 7) are given

in Tab. 1.

Depending on the agent’s first move, we can distinguish between two different classes of strate-

gies: (i) suspicious (s = 0, 1, 2, 3), i.e. the agent initially defects, and (ii) generous (s = 4, 5, 6, 7),

i.e. the agent initially cooperates. Further, we note that four of the possible strategies do not pay

attention on the opponent’s previos action, i.e. except for the first move, the agent continues to

act in the same way, therefore the strategies sD, sC, gD, gC (s = 0, 3, 4, 7) can be also named

rigid strategies.

The more interesting strategies are s = 1, 2, 5, 6. Strategy s = 6, known as (generous) “tit for

tat” (TFT), means that agent i initially collaborates and continues to do so, given that agent

j was also collaborative in the previous move. However if agent j was defective in the previous

move, agent i chooses to be defective, too. This strategy was shown to be the most successful

one in iterated Prisoners Dilemma games with 2 persons [1]. Here, however, we are interested

in spatial interactions, where agents simultaneously encounter with 4 different neighbors.

Agents playing strategy gATFT (s = 5) initially also start with cooperation and then do the

opposite of whatever the opponent did in the previous move, while agents playing strategy

sATFT (s = 1) behave the same way, except for the first move where they defect. Agents

playing strategy sTFT (s = 2) also start with defection, but then imitate the previous move of

the opponent, as in gTFT. A closer look at the encounters reveals that sTFT and gTFT will

exploit each other alternatively while gTFT will mutually cooperate. Also, sATFT and gATFT

exploit each other alternatively, while sATFT will alternatively cooperate. This illustrates that

the first move of a strategy can be vital to the outcome of the game. The number of interactions
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ng is also a crucial parameter in this game, because, if ng is even, gTFT and sTFT will gain the

same, but in case of ng being odd sTFT will gain more than gTFT.

Eventually, it can be argued that some of the strategies do not make sense from a human

point of view. In particular sATFT or gATFT seem to be “lunatic” or “paranoid” strategies.

Therefore, let us make two points clear: Such arguments basically reflect the intentions, not

to say the preconceptions, of a human beholder. We try to avoid such arguments as much as

possible. In our model, we consider a strategy space of 23 = 8 possible strategies, and there is no

methodological reason to exclude a priori some of these strategies. If they do not make sense,

then this will be certainly shown by the evolutionary dynamics used in our model. I.e., those

strategies will disappear in no time, but not because of our private opinion, but because of a

selection dynamics that has proven its usefulness in biological evolution. So, there is no reason

to care too much about a few “paranoid” strategies. On the other hand, biological evolution has

also shown that sometimes very unlikely strategies get a certain chance under specific (local?)

conditions. In a complex system, it would be a priori not possible to predict the outcome of a

particular evolutionary scenario, simply because of the path-dependence. We come back to this

point in our conclusions, where we shortly discuss that in the case of eight strategies and ng = 2

also unpredicted strategies survive.

3 Spatial Interaction

So far, we have explained the interaction of two agents with a one-step memory. This shall

be put now into the perspective of a spatial game with local interaction among the agents. A

spatially extended (non-iterative) PD game was first proposed by Axelrod [1]. Based on these

investigations, Nowak and May simulated a spatial PD game on a cellular automaton and found

a complex spatiotemporal dynamics [7, 8]. A recent mathematical analysis [2] revealed the

critical conditions for the spatial coexistence of cooperators and defectors with either a majority

of cooperators in large spatial domains, or a minority of cooperators in small (non-stationary)

clusters.

In the following, we concentrate on the iterated PD game, where the number of encounters,

ng, plays an important role. We note that possible extensions of the IPD model have been

investigated e.g. by Lindgren and Nordahl [5], who introduced players which act erroneously

sometimes, allowing a complex evolution of strategies in an unbounded strategy space.

In the spatial game, we have to consider local configurations of agents playing different strategies

(see Fig.1). As explained in the beginning, each agent i shall interact only with its four nearest

neighbors. Let us define the size of a neighborhood by n (that also includes agent i), then

the different neighbors of i are characterized by a second index j = 1, ..., n − 1. The mutual
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Figure 1: Local neigbhorhood of agent i. The nearest neighbors are labeled by a second index

j = 1, ..., 4. Note that j = 0 refers to the agent in the center.

interaction between them results in a n-person game, i.e. n = 5 agents interact simultaneously.

In this paper, we use the assumption that the 5-person game is decomposed into (n−1) 2-person

games, that may occur independently, but simultaneously [4, 11], a possible investigation of a

“true” 5-person PD game is also given in [11].

We further specify the θi that characterize the possible actions of each agent as one of the

strategies that could be played (Tab. 1), i.e. θi ∈ s = {0, 1, . . . , 7}. The total number of agents

playing strategy s in the neighborhood of agent i is given by:

ks
i =

n−1∑

j=1

δs θij
(3)

where δxy means the Kronecker delta, which is 1 only for x = y and zero otherwise. The vector

ki = {k0

i , k
1

i , k
2

i , . . . , k
7

i } then describes the “occupation numbers” of the different strategies in

the neighborhood of agent i playing strategy θi. A local occupation pattern shall be abbreviated

by a term Kki

θi
.

Agent i encounters with each of its four neighbors playing strategy θij in independent 2-person

games from which it receives a payoff denoted by aθiθij
, which can be calculated with respect to

the payoff matrix, eq. (1). The total payoff of an agent i after these indepentent games is then

simply

ai(θi) =

n−1∑

j=1

aθiθij
=

∑

s

aθis · k
s
i (4)

We note again that the payoffs aθis also strongly depend on the number of encounters, ng, for

which explicit expressions have been derived. They are concluded in a 8 × 8 payoff matrix not

printed here [10].
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In order to introduce a time scale, we define a generation G to be the time in which each agent

has interacted with its n − 1 nearest neighbors ng times. During each generation, the strategy

θi of an agent is not changed while it interacts with its neighbors simultaneously. But after a

generation is completed, θi can be changed based on a comparison of the payoffs received. I.e.,

payoff ai is compared to the payoffs aij of all neighboring agents, in order to find the maximum

payoff within the local neighborhood during that generation, max {ai, aij}. If agent i has received

the highest payoff, then it will keep its θi, i.e. it will continue to play its strategy. But if one of

its neighbors j has received the highest payoff, then agent i will adopt or imitate, respectively,

the strategy of the respective agent. If

j? = arg maxj=0,...,n−1 aij (5)

defines the position of the agent that received the highest payoff in the neighborhood, the update

rule of the game can be concluded as follows:

θi(G + 1) = θij? (G) (6)

We note that the evolution of the system described by eq. (6) is completely deterministic, results

for stochastic CA have been discussed in [3, 6].

The adaptation process leads to an evolution of the spatial distribution of strategies that will be

investigated by means of computer simulations on a cellular automaton in the following section.

4 Evolution of Spatial Patterns of 3 Strategies

In order to get a graphic idea of the spatio-temporal evolution, we have restricted the computer

simulation to only three strategies instead of eight, namely sD, sATFT and gTFT (s = 0, 1, 6).

The simulation are carried out on a 100 × 100 lattice with periodic boundary conditions, in

order to eliminate spatial artifacts at the edges. Initially, all agents are randomly assigned one of

the three strategies. Defining the total fraction of agents playing strategy s at generation G as

fs(G) = 1/N
∑N

i=1
δθis, f0(0) = f1(0) = f6(0) = 1/3 holds for G = 0 (see also the first snapshot

of Fig. 2).

Because each agent encounters with his 4 nearest neighbors ng times during one generation, in

each generation (N/2×ng×4) indepentent and simultaneous deterministic 2-person games occur.

Fig. 2 shows snapshots of the spatio-temporal distribution of the three stategies for ng = 2, while

Fig. 3 shows snapshots with the same setting, but for ng = 3.

For ng = 2, we see from Fig. 2 that in the very beginning, i.e. in the first four generations,

strategy sD grows very fast on the expense of sATFT and especially on gTFT. This can be

also confirmed when looking at the global frequencies of each strategy (see left part of Fig. 4).
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G=0 G=1 G=2

G=4 G=22 G=150

Figure 2: Spatial-temporal distribution of three strategies sD (black), sATFT (white), and

gTFT (gray) on a 100 × 100 grid for ng = 2.

Already for G=4, strategy sD is now the majority of the population – only a few agents playing

gTFT and even fewer agents playing sATFT are left in some small clusters. Hence, for the next

generation we would assume that the sD will take over the whole population. Interestingly, this

is not the case. Instead, the global frequency of sD goes down while the frequency of gTFT starts

to increase continuously until it reaches the majority. Only the frequency of sATFT stays at its

very low value. On the spatial scale, this evolution is accompanied with a growth of domains of

gTFT that are finally separated by only thin borders of agents playing sD (cf Fig. 2 for G = 150).

The reasons for this kind of crossover dynamics will be explained later.

When increasing the number of encounters ng from 2 to 3, we observe that the takeover of gTFT

occurs much faster. Already for G = 13, it leads to a situation where all agents play gTFT,

with no other strategy left. Hence, they will mutually cooperate. The fast takeover is only partly

due to the fact that the total number of encounters during one generation has increased. The

main reason is that for ng = 2 agents playing sATFT are able to locally block the spreading of

strategy gTFT, while this is not the case for ng = 3. This is because both of the ng dependence

of the agent’s payoff and the local configuration of players: for ng = 2, there is only one local
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G=1 G=2

G=4 G=11

Figure 3: Spatial-temporal distribution of three strategies sD (black), sATFT (white), and

gTFT (grey) on a 100×100 grid for ng = 3. The comparison with Fig. 2 elucidates the influence

of ng.
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Figure 4: Global frequencies fs(G) of the three strategies for ng = 2 (left) and ng = 3 (right).

For the spatial distribution, see Fig. 2 and Fig. 3, respectively.
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configuration where strategy gTFT can invade sATFT, because of the higher payoff. After this

invasion, however, the preconditions for further invasion have vanished. For ng = 3, this situation

is different in that there are more local configurations, where gTFT can invade sATFT. This in

turn enables the further takeover. The crossover dynamics mentioned in conjunction with Fig.

4 can be explained in a similar manner. For ng = 2 gTFT can not spread initially because of

agents playing sATFT. Only sD is able to invade sATFT and gTFT, therefore its frequency

increases. Once sATFT is removed, gTFT can spread.

5 Global Payoff Dynamics

The adaptation of strategies by the agents is governed by the ultimate goal of reaching a higher

individual payoff. As we know from economic applications, however, the maximization of the

private utility does not necessarily mean a maximization of the overall utility. So, it is of interest

to investigate also the global payoff and the dynamics of the payoffs of the individual strategies.

The average payoff per agent ā is defined as:

ā =
1

N

N∑

i=1

ai(θi) =
∑

s

fs(G) · ās ; ās =

∑
i ai(θi)δθis∑

i δθis

(7)

where fs(G) is the total fraction of agents playing strategy s and ās is the average payoff per

strategy, shown in Fig. 5 for the different strategies.
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Figure 5: Average payoff per strategy, ās, eq. (7), vs. time for ng = 2 (left) and ng = 3 (right)

We note that the payoffs per strategy for the 2-person games are always fixed dependent on

ng. However, the average payoff per strategy changes in the course of time mainly because the
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local configurations of agents playing different strategies change. For ng = 2, we have the stable

coexistence of all three strategies (cf Fig. 2 and Fig. 4left), while for ng = 3 only strategy gTFT

survives (cf Fig. 3 and Fig. 4right). Hence, in the latter case we find that the average payoff of

gTFT reaches a higher value than for ng = 2, while in Fig. 5 the corresponding curves for the

other strategies simply end, if one of these strategies vanishes.

Eventually, the average global payoff is shown in Fig. 6 for different values of ng. Obviously, the

greater ng, the faster the convergence towards a stationary global value, which is ā = 3 only in

the “ideal case” of complete cooperation. As we have already noticed, for ng = 2 there is a small

number of defecting agents playing either sD or sATFT left, therefore the average global payoff

is lower in this case.

0 50 100 150 200
G

0

0.5

1

1.5

2

2.5

3

a− ng=9
ng=3
ng=2

Figure 6: Average global payoff ā, eq. (7), vs. time for different values of ng.

6 Extensions and Conclusions

In this paper, we have investigated the spatial-temporal distributions of agents playing different

strategies in an iterated Prisoner’s Dilemma game. Their interaction is restricted to the four

nearest neighbors, hence, local configurations are of great influence. Particular importance was

on the investigation of the number of consecutive encounters between any two agents, ng. For

the case of three strategies, we find that a critical value of ng exists above which no coexistence

between agents playing different strategies is observed. Hence, the most successful strategy, i.e.

the one with the highest payoff in an iterated game, gTFT, is eventually adopted by all agents.

This confirms the findings of Axelrod [1] also for the spatial case. Below the critical ng, we

find a coexistence between cooperating and defecting agents, where the cooperators are the

clear majority (playing gTFT), whereas the defectors play two different strategies, either sD
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or sATFT. In both cases, we observe that the share of gTFT in the early evolution drastically

decreases before it eventually invades the whole agent population.

We notice, however, that this picture holds only for a random initial distribution of strategies. It

can be shown [10] that there are always specific initial distributions of strategies where gTFT fails

to win. An interesting question is also under what conditions gTFT is not the most successful

strategy any more. This is of particular interest if one considers the case where all eight strategies

are present in the initial population. In [12] we have investigated this more complex case with

ng = 2. In contrast to the case of three strategies (gTFT, sD, sATFT) which all coexist for

ng = 2, we observe the coexistence of either two strategies (gD, sTFT) or four strategies (gD,

sTFT, sD, sC) (given in order of frequency) in the final state. In particular, the most known

strategy gTFT will become extinct, which is certainly different from the expected behavior. A

second point to be mentioned, we find for different runs with the same initial conditions different

outcomes of the simulations. Hence, random deviations may lead the global dynamics to different

attractors. Thus, local effects seem to be of great influence for the final outcome. This proves our

point made at the end of Sect. 2, that path dependence plays an important role in the dynamics

and the evolutionary game cannot be completely predicted.

Eventually, we note an important insight about spatial IPD [10]: Given a specific ng, one can

analytically deduce from the payoff matrix that the payoff of agent i playing strategy θi is always

the same if it encounters with agent j playing particular strategies θj ∈ s. These particular

strategies can be grouped into certain classes, that yield the same payoff to agent i. For instance,

for ng = 2 it makes no difference for an agent playing strategy sD (s = 0) to play either against

sATFT, sC, gD or gTFT (s = 1, 3, 4, 6), while for ng = 3 the same is only true for sATFT and

sC.
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[6] Heinz Mühlenbein and Robin Höns. Stochastic analysis of cellular automata with applica-

tions to the voter model. Advances in Complex Systems, 5(2):301–337, 2002.

[7] Martin A. Nowak and Robert M. May. The spatial dilemmas of evolution. International

Journal of Bifurcation and Chaos, 3(1):35–78, 1993.

[8] Martin A. Nowak and Robert M. May. Evolutionary games and spatial chaos. Nature, 359:

826–829, October 1992.

[9] Martin A. Nowak and Karl Sigmund. Tit for tat in heterogeneous populations. Nature,

355:250–253, January 1992.

[10] Frank Schweitzer, Robert Mach, and Heinz Mühlenbein. Spatial evolution of strategies in

an iterated prisoner’s dilemma. Journal of Game Theory, 2003 (to be submitted)

[11] Frank Schweitzer, Laxmidhar Behera, and Heinz Mühlenbein. Evolution of cooperation in

a spatial prisoner’s dilemma. Advances in Complex Systems, 5(2):269–300, 2002

[12] Frank Schweitzer, Robert Mach, and Heinz Mühlenbein. Agents with heterogeneous strate-

gies interacting in a spatial IPD. Workshop on Economics with Heterogeneous Interacting

Agents (WEHIA), Kiel, Germany, 29-31 May 2003

12/12


