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A kinetic theory of nucleation and cluster growth in non-ideal quasi-binary liquid and solid solutions with, in general,
concentration dependent diffusion coefficients of the segregating particles is developed. This theory allows one, in a
straightforward way, to account for the influence of elastic strains, evolving in solid solutions as the result of cluster formation
and growth, on the kinetics of the phase transformation. Specific properties of the solution or the evolving elastic ficlds have
to be incorporated explicitly only in the final expressions describing nucleation and growth. The theory is applied to special
cases demonstrating the consequences of depletion of segregating particles, the non-ideality of the solution and effects due to
elastic strains on the kinetics of the segregation process. It is shown that, due to the non-steady character of the nucleation
process, resulting from time-lag and depletion effects, the incorporation of the non-ideality of the solution and elastic strains
into the description leads not only to a variation of the nucleation rate but changes also a number of other significant
characteristics of the phase transformation, e.g., the cluster distribution function and the rate of the decomposition process.

1. Introduction

Nucleation and cluster growth is one major
way thermodynamic phase transitions of first order
may proceed. Despite the long history of investi-
gations on this topic due both to widespread tech-
nological applications and the complexity of this
phenomenon, it is also at present an actively de-
veloping field of research both from theoretical
and experimental points of view [1,2].

Two problems that have attracted much atten-
tion in the last years are the influence of depletion
on nucleation, in particular, and on the whole
course of the transition, in general, and the effects
due to the evolution, in the course of the transi-
tion, of elastic strains of different types [3--5]. Due
to time-lag effects and variations of the state of
the system in the course of the transition, the
classical steady-state approximation for the nucle-
ation rate cannot be applied. Moreover, the non-

ideality of most solutions also affects both nuclea-
tion and growth.

Thus, a general theory of nucleation and cluster
growth in non-ideal solutions under the influence
of different kinds of elastic strains is required. In
the present paper such a theory is developed and
applied to quasi-binary solutions.

Starting with some basic equations of the linear
thermodynamics of irreversible processes, in sec-
tions 2 and 3 macroscopic growth equations for
spherical clusters in quasi-binary non-ideal solid
or liquid solutions are developed for two different
diffusion mechanisms of the components (ex-
change of places and relatively independent diffu-
sion of both components).

The general method for incorporation of the
effects of elastic strains of different types into the
description of this process is given in section 4. In
comparison with a previous study [6], where ideal
solutions and concentration-independent diffusion
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coefficients are assumed, the generalization with
respect to this part consists in the incorporation of
the non-ideality of the solution and the concentra-
tion dependence of the diffusion coefficients into
the theory.

In section 5 the kinetic equations, describing
nucleation and cluster growth or shrinkage, are
formulated and the transition probabilities are
determined.

The general theory is applied to special cases. It
is demonstrated that the account of the non-ideal
character of the solution and the evolving elastic
fields has a significant effect not only on the
nucleation rate but on all characteristics of the
phase transformation such as cluster distribution,
rate of decomposition, and density profile of the
segregating particles in the vicinity of the cluster.

2. Diffusion-limited cluster growth: two cases

In the framework of the linear thermodynamics
of irreversible processes [7] the basic equations for
the derivation of the growth equations for clusters
of a new phase are given by
=2 LaXe, Xo= —grad p,, (1)

k
where j, are the density of fluxes of particles of
the ith component due to gradients in the chem-
ical potential p,. The pressure p and temperature
T are kept constant. The L, are the Onsager
coefficients obeying the relation [7]

Ly =Ly (2)

We consider here growth processes in non-ideal
binary solutions, where the clusters consist mainly
of one component.

Two cases are considered. If, as assumed first,
the diffusion proceeds via an exchange of places
of the particles of the different components, in
addition to egs. (1) and (2) the relation

jl +j2 =0 (3)
has to be fulfilled, resulting in

j1= —Ly; grad (p, — p,) (4)
Jo= —L,, grad (ﬂz —p)-

It follows immediately from eqs. (3) and (4) that
in this first case the relation L,; = L,, holds.

A substitution of the expression for the chem-
ical potentials u,; according to [§]

,U«,=.U4'(),'(p, T) +kT ln(xlfl) (5)
into eqs. (4) yields

T L;kT x; 9f;

Ji= —'Ci(l _xi) [ fr x ] grad Ciy - (6)

i

where x, is the molar fraction and f; the activity
coefficient of the component i, k is the Boltz-
mann constant, and p,, is the reference value of
the chemical potential. Defining the partial diffu-
sion coefficient D, of the component i by [7]

j‘i= —D, grad ¢,, (7)
one obtains
L,kT L% af;
b=ca- M7 a] (8)
or
_ 3f,
— plid) LA
D =D [1+ ,-ax,]’ )
with
) L.kT
(,d)____ i
KR (0

¢; is the volume density of particles of component
i

Since the coefficients, L;, in eqgs. (4) are a
measure of the frequency of exchange of particles
of the different components, L, must be also a
function of both x; and x,, so that divergencies
of DY do not occur. :

It was assumed in the derivation, that the con-
dition ¢; + ¢, = ¢ = constant is, at least approxi-
mately, fulfilled. With eq. (3) and the Gibbs—
Duhem relation [8] this condition yields
D, =D,; D{P=p{, (11)
Returning to the chemical potential the expression
for j, may be written also as

R ('d)
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since after the substitution of eq. (5) into eq. (12)
egs. (7) and (8) result, again.

As the second case, we consider the situation
that L, = 0 holds for i # k. In this case we obtain
for each component

L, grad p, (13)

and with eq. (5)

; of;
] —DiD|1 + f . ]grad ¢, .
kTL [ (14)
DA(id) _ ii
1 C *

Since by assumption the diffusion process of the
components. proceeds, in this second case, inde-
pendently of each other, L, and, consequently,
DY do not depend on the concentration of the
other components. Again, the density of fluxes j;
may be written in the form given by eq. (12) with
DY determined here by eq. (14).

Thus, independently of the diffusion mecha-
nism, also in non-ideal solutions, the density of
fluxes may be expressed via eq. (12), with a coeffi-
cient DY we consider in the following as con-
centration independent.

3. Steady-state solution of the diffusion equation

For spherical symmetry the differential equa-
tion for the determination of the stationary con-
centration profile of the segregating component in
the surrounding of a cluster with a radius R reads
[6,10]

18[8), cd zﬁg] 3c 3¢ _

pekd L ar]+,zar[’ or |t orar =0
(15)

with

=1In f. , (16)

Taking into account the boundary conditions

c(r=R)=cg,

c(r—ow)=c,,

(17)

the solution of eq. (15) can be obtained as (sce
also refs. [6,10])

c(r) _ Cooexp[ (00)] —Cr CXp[¢(R)]
[75% ewlo()]

X exp[ — ¢ (0)] K%exp[q&(r)]

+cp exp[$(R) —o(r)]. (18)

The density of fluxes through the surface of the
cluster with the radius R reads then

Ceo €xp[@(00)] = c exp[¢(R)]
2 ©dr (19)
B[ explo()]
and with eq. (16) |
o= —pS wof (0) —ch(R) (20)

R [” ()

D is the measured diffusion coefficient of the
segregating component at a concentration, c,. We
identify this concentration, cg, in the immediate
vicinity of the cluster with the equilibrium solubil-
ity of a cluster with radius R. For the completion
of the derivation, the equilibrium solubility, ¢z, of
a cluster with a radius R, has to be determined for
non-ideal solutions. From the necessary extremum
conditions for the Gibbs free energy AG =
—n, Ag+ oA+ ... of the heterogeneous system
cluster in the matrix, one obtains for quasi-binary
solutions [3,6]

Jr=—D

p(cr) — o = (20/C,R). (@)

Ag is the bulk contribution to the change of G
due to the formation of a cluster with n, particles,
and a density of particles, ¢,, a surface area, A4,
and a specific interfacial energy, o. Ag can be
expressed as Ag=pp—p,, which is used in the
derivation of eq. (21) t, is the chemical potential
of the evolving phase at a pressure p and a
temperature 7, pg and pg(cg) are the chemical
potentials of the segregating particles far away
from and in the immediate vicinity of the cluster,
respectively. It follows from the equilibrium con-
ditions at a planar interface that p, = pg(c’). ¢’ is
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the equilibrium solubility of the considered com-
ponent for a planar interface between both phases.
One obtains with eq. (5)

enf(ex) = f(¢") expl20/c,KTR]. (22)
With eq. (22), eq. (20) results in
X oS (0) —c'f(c’ ) exp[20/c, kTR]

R[5 10)

Jr

(23)

By the introduction of a new variable of integra-
tion y = R/r we obtain further

_ Dc’f(c’) [wa(oo)—exp 20
10 kTR |
R ay/(») Ie) T

(24)

Equation (22) represents at the same time a rela-
tion determining the critical cluster size for non-
ideal solutions in dependence on the actual super-
saturation

_ 20
¢~ ¢ kT In[cf(c)/c'f(cN]’

where c is the density of segregating particles at a
sufficiently large distance from the growing clus-
ter. Taking into account the notations (17) it has
to be identified with c_,.

With eq. (25), eq. (24) may be expressed as
_ Dc'f(c") 20
k=T [e"p c kTR, ~ P kTR ]

R["dxf(y)

R (25)

(26)
which for small values of the exponent is reduced
to
. 2¢Dc’f(c’ 1 1
Ja=— ]( ) [’R—_f]- (27)

cakTRfO dyf(»)

Assuming incompressibility of the cluster phase
the change of the radius of the cluster is connected
with the flux through the surface via [9,3]

dR e

dr ¢ (28)

o

and we obtain, finally,
dR  20Dc'f(c") 1 [L_l]

B R{R
T [ dyf(y)

(29)

d¢

For perfect solutions (f=1) this equation is re-
duced to the well-known expression (e.g., ref. [9])

dR 26Dc 1[1 1] (30)

di —er R|R.TR
A comparison of egs. (29) and (30) indicates that
in the estimation of the diffusion coefficient from
experimentally observed growth curves, which are
based usually on eq. (30), corrections due to the
non-ideality of the solution have to be incorpo-
rated.

4, Influence of elastic strains on.the gfdvvth rate

In solid binary solutions the processes of diffu-
sion, growth and dissolution of clusters of a new
phase are, in general, influenced by the c;volvmg
elastic strains [11]. This influence is to be taken
mnto account in two ways, via modifications of the
diffusion process (diffusion coefficient) and via a
variation in the equilibrium solubility. It has to be
expressed differently in the two cases considered
here, so we have to study them separately.

4.1. Diffusion by exchange of places

First we consider; again, the situation that the
diffusion process takes place via an exchange of
places of the particles of the different components,
a process described by eqgs. (3)—(2).

With the general thermodynamic relationship

(8]

(aé/axl) =My, (31)
egs. (4) read
L, grad(3G/dx,). (32)

G is the molar free enthalpy of the solution.

The influence of elastic strains on growth thus
may be expressed via an additional term G(‘) in
G:

G=G™M+ G, ‘ - (33)
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where the first term, GP, represents G in the
absence of elastic strains.

Neglecting the composition dependence of the
elastic moduli, it can be shown, that G¢ for the
considered first mechanism of diffusion and the
resulting strains does not depend on composition
[3,6,10,11]. Thus 3G‘?/0x, =0 and egs. (15)—(20)
remain valid.

However, taking into account the influence of
elastic strains, the generalized Gibbs-Thomson
equation reads, now,

(€)
B+ claaG—V] =20/c, R (34)

nU‘B(CR) —

(compare eq. (21)). If the chemical potentials are
expressed through concentrations and activity
coefficients in analogy to eq. (22) we obtain

yor 1 [20 3G
ch(cR) =c'f(c ) exp[c kT(T + v )}
(35)
and for small values of the exponent
141 (20 3G9
tekT\R T |
(36)

The total energy of elastic deformations, G(©,
evolving in diffusion processes due to exchange of
places of particles of the different components
with different values of the volume per particle
may be written as [6,11,12]

crfer) =c"f(c")

G =V, (37)

where V, is the volume of the cluster, and € can be
expressed through the elastic constants of both
cluster and matrix phases.

Instead of eq. (22), one obtains then

ch(cR)=c'f(c')exp[ca%,(%Jrc)]. (38)

Elastic strains of the considered type thus result
effectively only in an increase of the equilibrium
concentration, c¢g, by a factor exp(e/c kT).

4.2. Relatively independeni diffusion of both compo-
nents

We consider now the second possible case, that
both components are mobile and cross-effects may
be neglected (L, = L,; =0; eqs. (13)-(14)). The
influence of elastic strains on the diffusion process
may be taken into account then by an additional
term p{® in the expression for the flux of particles
(compare eq. (12), [13])

; Di(id)ci

Ji= - kT grad(ui + lu’(iC))' (39)
With the notation

¢ =In f,+ {5 &9 =p/kT, (40)

we arrive at egs. (15)—(19), again, now with ¢
given by eq. (40).

For the segregating particles p{® may be ex-
pressed via the volume density of energy of elastic
deformations g(© as [13]
o= 2g, (41)

«

where w is some constant of proportionality. Thus
we obtain for this component

w
¢=In f+¢'; ¢! =——5g . (42)

In the second case, the total energy of elastic
deformations, G'©, depends not only on the elas-
tic constants of both phases but also on the mobil-
ity of the non-segregating component. In general,
(8G9 /aV,) is an increasing function of the cluster
size and the elastic strains may result in an inhibi-
tion of growth with an increasing size of the
cluster. Models describing the mobility of the ma-
trix particles and its effect on G are developed,
e.g., in refs. [3,6,13]. Thus, via an influence on G'©
the motion of the first component has a some-
times considerable effect on the segregation of the
second one which makes the assumptions, leading
to egs. (13)—(14) and (39), (40), less restrictive.

5. Non-steady state nucleation and elastic strains:
kinetic equations

If, as we assume here, nucleation and cluster
growth proceed via addition or evaporation of
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monomers only, then this process may be de-
scribed by a system of rate equations of the form
[14-17]

ON(n, t)/3t=I(n—1,1t)—1I(n, t) (43)

with

I(n, t)=w (t)N(n, t)—w_ N(n+1,1).
(44)

N(n, t) is the number of clusters consisting at the
time, ¢, of n monomers. w," and w, are the
transition rates for addition and evaporation, re-
spectively, of monomers to/from a cluster consist-
ing of n particles. ‘

The transition rates are connected with the
average or deterministic velocity of cluster growth
via

dn/dt=(w, —w, )
or through (cf. eq. (27))
dn/dt = —4xR? j,, (46)

| (45)

where R, is the radius of a cluster consisting of n
particles.

With eq. (19) we obtain

D
-c—lﬁ =47R,

T R [ cle()

r2

X[ ¢, exp(¢(0)) —cg exp(d(R))]. (47)

An introduction of the reduced variable y =R, /r
yields

dn D

—, =4aR, )
fo dy exp[¢(y)]

dt

X [,y exp(¢(o0)) = cp exp(¢(R))]. (48)

In the case of a concentration dependence of the
diffusion coefficient for D its value in the im-
mediate vicinity of the cluster is to be taken
(compare eqgs. (7), (19) and (27)).

Introducing an effective diffusion coefficient
D® by

D(CR) (49)

D(e)= ,
fol dy exp[o(y)]

the expressions for w,” and w,” may be written as
w,} =4aR, D®c_ exp(¢(0)),
w, =4aR, D¢, exp(¢(R)).

(50)

Note, that egs. (49) and (50) are valid independent
of any specific properties of the solution and the
type of the evolving strains. Thus, only at this
point a specification of the character of the solu-
tion and the properties of the strain fields is
needed to describe a particular system of interest.

Moreover, it has to be taken into account, that
the total number of segregating particles is con-
served:

Y nN, = constant. (51)

Equation (43) represents thus a system of coupled
equations which can be solved numerically only.
Moreover, since monomers are consumed in the
process of cluster formation and growth, the con-
centration of free particles, ¢, is also a function
of the actual cluster-distribution and consequently
of time.

6. Numerical solution of the kinetic equations for
special cases

6.1. Numerical method

With the transition rates (eq. (50)) determined
in the preceding chapter, we study, now, nuclea-
tion and cluster growth in a non-ideal solution in
the presence of elastic strains expressed via egs.
(33) and (37).

We assume the usual initial and boundary con-
ditions

(i) N(n,1=0)=0 forn=2
(i) N(n>n* 1)=0. (52)

The first of these conditions (i) implies that the
segregating component is present in the system in
the initial state in form of monomers only.

The second condition (ii) gives a restriction for
the size of the clusters, for which the evolution in
time can be described. It holds always for suffi-
ciently short time intervals and results in a restric-
tion of the number of equations (equal to n*) of
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the form (43) which have to be solved simulta-
neously.

If one is interested to follow the time evolution
of the size distribution for larger periods of time,
in order to save computer time, one of the follow-
ing two methods can be used.

The first method consists in the description of
the growth of sufficiently large clusters n (n > n*
> n_, where n_ corresponds to the critical cluster
size) instead of eqs. (43) and (44) by a determinis-
tic growth equation (such as eq. (28) (see, for
example, refs. [15-17]). This approach neglects,
however, diffusion processes in the space of clus-
ter sizes and a possible broadening of the distribu-
tion connected with this process [18].

To avoid these uncertainties, we retain here the
description by egs. (43) and (44) but carry out the
calculations only for certain values, N(n, t), with
non-equidistantly distributed grid points n. For
n < 100 the smallest possible difference between
two grid points, An =1, is maintained; for n>
100, An>1.

To carry out the calculations the functions N(n
+ 1) in egs. (43) and (44) have to be expressed via
N(n). This expression is possible through a
Taylor-expansion, where only the first three terms
are retained:

N(n+1)=N(n) £ (3/3n)N(n)
+3(08%/8n*)N(n). (53)

The aim of the calculations is to demonstrate:

(1) the influence of the depletion of monomers
of the segregating component;

(2) the influence of the non-ideality of the
solution; and

(3) the influence of (a special type of) elastic
strains on the kinetics of the phase transition. As
an example the process of AgCl precipitation in a
sodium borate liquid is considered. Thermody-
namic and material constants are taken from refs.
[19,20].

It has been shown in the cited papers that the
mentioned system (AgCl in a sodium borate liquid)
can be well-described as a regular solution [21]
defined by

1nf=k—QT(1~X)2, 0=472x10"21, (54)

where x is the molar fraction of the segregating
component, and k the Boltzmann constant. We
apply expression (54) in our calculations as an
example for a non-ideal solution and compare the
results with the corresponding curves for perfect
or ideal solutions ( f; = 1).

Other values of the parameters are ¢, =2.3 X
10%® m™? ¢=008 Nm ', and ¢’ =14x10%*
m™3. The prefactor D© exp[o(c’)] was de-
termined from the ( R(¢))* plots of the asymptotic
stage of Ostwald ripening ((R) is the average
radius of the ensemble of clusters). Its value for
T=730 K is found to be equal to 5.8 X 107 '®
m? s~

6.2. Results

Starting with a sharp initial distribution of the
segregating particles, consisting at ¢ =0 of mono-
mers only, the results of the numerical calcula-
tions show in a first stage a very fast process of
establishment of a primary distribution for small
cluster sizes. This process results in finite systems,
when the number of particles is conserved, in an
instantaneous decrease of the supersaturation due
to the consumption of monomers connected with
the formation of this primary cluster distribution.
This effect is investigated in more detail elsewhere
[22].

In fig. 1, based on a numerical solution of eq.
(43), the rate of formation of clusters with a radius
R is shown in dependence on time. Depletion
effects — both the decrease of the initial super-
saturation as the result of the establishment of a
primary cluster distribution and the consumption
of monomers in its further evolution — lead to a

’ time-dependence of the nucleation rate and to a

lower value of the maximum nucleation rate as
compared with the value I, obtained from the
classical steady-state approximation for a given
supersaturation, which results in

I

class

=w"(R,)Z exp(AG(R_.)/kT). (55)

Z is the Zeldovich factor and AG(R,) is the
change of the Gibbs free energy connected with
the formation of a cluster with a critical size R,
[14].
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o

i

— Ree[pm]

0 1 2 3 & 5 6
—= time t[s]

Fig. 1. Rate of thermally activated nucleation of clusters of
different sizes I( R, ¢) versus time for a regular solution without
elastic strains according to eq. (44). The values of the parame-
ters are: ¢, =2.3x10% m™3, ¢=42X10% m™3, ¢/ =14X
1026 m™3, =008 N m~!, D@ exp[¢p(c’)]=58x10"16
m? s~ 1, T="730 K. The solution is described by the following
expression for the segregating particles: In f=Q/kT(1— x)?,
with O =4x72-1072° J. The value of the steady-state nuclea-
tion rate I corresponding to these parameters is equal to

class
I =2000x102" m~3 571 (cf. eq. (54)).

class

Equation (55) can be supplemented by an ex-
pression for the calculation of the time-lag needed
for the establishment of the steady-state nuclea-
tion rate [23] for clusters of a critical size R .

From the example presented in fig. 1, two more
conclusions can be drawn. First, the time-lag for
the establishment of the maximum nucleation rate
of clusters of a given size, R, depends on R. This
dependence has to be taken into account in ex-
perimental investigations, where usually not clus-
ters of a critical size but of a size corresponding to
the lower resolution limit of the experimental ap-
paratus, e.g., R ~2.5 nm for SAXS, are detected.
Moreover, the value of the maximum rate of
nucleation depends also on R which is due to an
interplay of depletion, nucleation and growth.

Taking the time interval of formation of clus-
ters of a radius R =2.5 nm as a measure of the
length of the nucleation period, it can be seen
from fig. 1, that the duration of the nucleation
period is about 3 s. This estimation remains nearly
the same if other measures of the length of the
nucleation stage are used, connected with the rate
of thermally activated formation of supercritical
clusters [24].

Figure 2 gives an illustration of the influence of
the non-ideal (regular) character of the solution on
nucleation. For comparison the cluster distribu-
tion is shown at certain moments of time for ideal
(dashed curves) and regular solutions (full curves).
The consideration of the non-ideality results in a
decrease of the total number of clusters and a
decrease of the initial rate of evolution of the
cluster distribution.

At a later stage, when the period of nucleation
is- finished, the situation changes. Now, the aver-
age cluster size of the distribution evolving in a
regular solution becomes larger compared with an
ideal solution. This is due to the higher number of
clusters formed initially in the ideal solution and
the resulting depletion. For a further growth of
the larger clusters, the smaller clusters have to be
dissolved. The time needed for the process of
dissolution contributes significantly to the hin-
drance of the growth of the larger clusters.

The effects discussed in connection with fig. 2
are generally observed, if the initial supersatura-
tion is decreased [15,16]. Thus, the account of the
non-ideal character of the solution can be inter-
preted as a special form of a decrease of the initial
supersaturation (compare, for example, eq. (25).

Moreover, it has to be expected, that elastic
strains of the form (37) will lead to the same
consequences. This is indeed the case, as shown at
part in fig. 3, where the rates of formation of
clusters of a radius R=15 nm are shown as a

=
220
Te
—
il
als after B
c
S a=0.70s
Ej 10 b=1.75s
5 c=3.00s 7
[
5 |
1
05 25 &5 65 85

— radivs[m10Y]

Fig. 2. Evolution of the cluster size distribution in the nuclea-

tion stage for ideal (dashed curves) and regular (full curves)

solutions and the same initial concentration of segregating
particles.
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=
[l

0]
[¥%)
o
T

Snm,f)[

HR=

5
—— time t[s]

Fig. 3. Rate of formation I of clusters of the size R =5 nm

versus time without (e =0, full line) and with elastic strains

(¢ =6.1x107 Y m~3, dashed line) of the form G(® = ¢V’ (cf. eq.
3G7).

function of time for € = 0 and € # 0 and the same
initial concentration of segregating particles.

Figure 4 gives the effective supersaturation
Ag/kT=MI(fc/f'c’y—¢€/c, as a function of time
for both cases (e =0 — full line; €+0 -~ dashed
line). Since the initial concentration of monomers
is equal in both cases the elastic strains decrease
the initial supersaturation compared with ¢ = 0.
As can be seen, the state characterized by a lower
supersaturation relaxes at a slower rate into the
equilibrium state.

— time {[5)

Fig. 4. Evolution of the effective supersaturation Ag/kT in
time without (e =0, full line) and with consideration of the
elastic strains (¢ = 6.1 X107 J m ™3, dashed curve).

7. Conclusions

It has been shown in the present study that due
to the non-steady character of the nucleation pro-
cess, resulting from time-lag and depletion effects,
incorporation of the non-ideality of the solution
and elastic strains leads not only to a change of
the nucleation rate but also to significant varia-
tions of a number of other characteristics of the
phase transformation process in quasi-binary solu-
tions (cluster distribution function, time-lag in
dependence on cluster size, rate of the decomposi-
tion process in different stages of the phase trans-
formation). Consequently, a detailed study of the
evolution of the distribution function with respect
to cluster sizes and its dependence on the initial
supersaturation, on specific properties of the sys-
tem under investigation, including different mod-
els for the evolving strains, is believed to be of
theoretical and practical interest. Such a study is
expected to be of particular interest for viscoelas-
tic materials such as glasses and polymers in the
vicinity of the glass transformation temperature.
The analysis can be carried out straightforwardly
based on the general rate or kinetic equations
outlined here.
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