Crisis, Contagion, and the Need for a New Paradigm

Joseph E. Stiglitz
Zurich
September 2012
Failures of modern macroeconomics

- Didn’t predict the financial crisis
 - Standard models assert that bubbles can’t happen
 - Based on simplistic models making strong economic and mathematical assumptions
 - Rational individuals with rational expectations,
 - Typically “representative agent models,” which meant that there were no problems of information asymmetries, no problems of externalities
 - Strong concavity assumption (important for consequences of risk diversification)
 - Standard models assert that shocks are exogenous
 - Key “disturbance” to the economy was endogenous

- Assumptions and conclusions inconsistent with historical experiences and micro-evidence
Policies based on flawed models were badly flawed

- Policy frameworks suggested that (a) keeping inflation low was necessary, and almost sufficient, for stability and growth; (b) government didn’t have instruments to prevent bubbles; (c) cheaper to clean up mess after bubble broke
- Even after bubble burst, economists claimed effects “contained”
 - because of **diversification**
 - Diversification had spread risks, in effect dissipating them
 - because markets have good “buffers”
Failures (cont.)

- Responses to crises (based on advice from economists) have clearly been inadequate
 - High unemployment 5 years after beginning of recession
- Standard models didn’t focus on credit—and therefore didn’t have much to say on repairing credit system
 - Credit entails differences in individuals (some are borrowers, some are lenders) and asymmetries of information (key problem—lenders don’t know who are good borrowers)
 - Theory of banking provided micro-foundations (including incentives of banks and bankers)
 - Remarkable that models used by Central Banks often had little to say about banking
 - Policies ignored lessons of this literature (Greenwald-Stiglitz, 2003)
Even less to say on *inherent deficiencies* in securitization

- Viewed to be one of key advances in financial markets
- Questionable improvements in risk diversification
- Unambiguous attenuation of incentives (selection, monitoring, enforcement)
- Some market participants took advantage of information asymmetries
- But clear evidence that most market participants didn’t even understand pervasive information asymmetries
- Many had beliefs and took actions that can not be reconciled with any reasonable model of rationality and rational expectations
- Remarkable testimony to inefficiency, irrationality of markets that market participants did not recognize these (and other) problems
 - Including risk of increased leverage
 - Market didn’t seem to learn lesson of Modigliani-Miller
Failures (cont.)

- Moreover, countries that have had highest persistent unemployment include those with allegedly most flexible labor markets (e.g. US), in contradiction to “standard” theory
 - But consistent with earlier studies of volatility
Failures (cont.)

- There were large losses associated with misallocation of capital before the bubble broke. It is easy to construct models of bubbles. But most of the losses occur after the bubble breaks, in the persistent gap between actual and potential output
 - Standard theory predicts a relatively quick recovery, as the economy adjusts to new “reality”
 - New equilibrium associated with new state variables (treating expectations as a state variable)
 - And sometimes that is the case (V-shaped recovery)
 - But sometimes the recovery is very slow
 - Persistence of effects of shocks
 - Explained by slow recovery of balance sheets (Greenwald-Stiglitz, 1993, 2003)
 - But current persistence is greater than can be explained by these models
Understanding what has happened

- There have been large (and often adverse) changes in the economy’s risk properties, in spite of supposed improvements in markets
 - Moving from “banks” to “markets” predictably led to deterioration in quality of information
 - Increased interdependence has led to more financial fragility

- The global economy is undergoing a major structural transformation
 - Structural transformations may be associated with extended periods of underutilization of resources
 - Associated with deep market failures
 - Important role for government to facilitate transformation

Does interconnectivity lead to more or less systemic risk?

- Key question in understanding this crisis:
 - Failures in one financial institution led to failures in others—to the point where the system was at risk
 - Problems in one country (US) led to problems in others
 - Phenomenon that economists call “contagion”
- Standard answer: spreading of risk, with concavity, leads to better outcomes
- But economic systems are rife with non-convexities—e.g. bankruptcy, natural non-convexities associated with information, incentive constraints
 - Standard model had ignored these
- Interlinked systems are more prone to system wide failures, with huge costs
- This crisis illustrates the risk
Key economic insight

- Privately profitable transactions may not by socially desirable
 - May lead to **systemic risk**
 - **Systemic risk** involves behavior of the system as a whole
 - There are important externalities
 - Excessive borrowing or interconnectivity can make the system more volatile
 - More vulnerable to shocks, whether endogenous or exogenous
 - Each market participant ignores these effects
Incoherence in standard macro-frameworks

• Argue for benefits of diversification (capital market liberalization) before crisis
• Worry about contagion (worsened by excessive integration) after crisis
• Optimal system design balances benefits and costs
“Contagion”

- Concept borrowed from epidemiology
- Response to the spread of diseases is not “diversification” but “isolation,” quarantine
- The spread of disease is a multiplicative process
An Analogous Problem

• With an integrated electric grid the excess capacity required to prevent a blackout can be reduced
 ▫ alternatively, for any given capacity, the probability of a blackout can be reduced.
• But a failure in one part of the system can lead to system-wide failure
 ▫ in the absence of integration, the failure would have been geographically constrained
• Well-designed networks have circuit breakers, to prevent the “contagion” of the failure of one part of the system to others.
A simple example

\begin{equation}
Q_i = F(S_i), \quad F' > 0, F'' \leq 0
\end{equation}

In autarky,

\begin{equation}
S_i = \hat{S} + \varepsilon_i
\end{equation}

where \(E(\varepsilon) = 0 \) and \(\text{Var}(\varepsilon) = \sigma_i^2 \). We normalize by choosing our units so that \(\hat{S} = 1 \).
Simple example (cont.)

- Polar case where there is no value of risk diversification—production is linear in S, provided S is greater than some critical number S^*, at which point system failure occurs, and a loss of $-C$ occurs. The main concern then is to minimize the losses from system failure.
Simple example (cont.)

- Assume that $S_i = -\alpha_1$ with probability p, α_2 with probability $1 - p$, such that

 $p\alpha_1 = (1 - p)\alpha_2$,

 i.e. expected output without bankruptcy is zero, but if $S \leq 0$, the country goes bankrupt, with output $-C$, where $C < \alpha_1$.

- Prior to liberalization, expected output is

 $-pC + (1 - p)\alpha_2 = p (\alpha_1 - C)$

- Assume $N = 2$, and there is full liberalization $\alpha_2 < \alpha_1$, i.e. $p < .5$

 - We focus on this case—small probabilities of “disaster”
Liberalization is unambiguously welfare decreasing

- With liberalization,
 \[p \left(\sum S_i/2 < 0 \right) = 1 - (1 - p)^2 \]

i.e. both countries go bankrupt if only one country has a bad outcome, and expected output (per country) is

\[(1 - p)^2 \alpha_2 - C (1 - (1 - p)^2) < -pC + (1 - p)\alpha_2 \]
Basic insight: even with mean preserving reductions in risk associated with risk pooling, the probability of any particular country falling below the bankruptcy threshold may increase with economic integration.
Some General Results

- Full integration never pays if there are enough countries
- Optimal sized clubs
- Restrictions on capital flows (circuit breakers) are desirable
Simple intuition:
Limited risk sharing may increase losses

- Assume that country has a loss of L, and that is has contracts that share that loss with n other countries $\sum L_i = L$.
- Assume the cost to each is linear in L_i, the loss it absorbs, provided $L_i < L^*$, but is C for $L_i > L^*$, where we assume C is large, and $> L$.
- Total LOSS = $-nC$ for $n < n^*$
 L for $n > n^*$

where $n^* = L/L^*$
\[\mathcal{L} = \begin{cases} -nC & \text{for } n < n^* \\ L^* & \text{for } n > n^* \end{cases} \]
Simple intuition: Large losses may lead to systemic crises

- Assume L is a random variable. (n is fixed)
- So long as L is small enough, diversification pays.
- But if L is large, there are large losses from the contagion, as many countries (banks) go into bankruptcy.
- If n is increased (a higher degree of diversification), diversification can handle a larger L.
- But when L is large, total societal costs are increased.
- There is a trade off—diversification helps with small L, hurts with large L.
- (The ability to absorb small shocks is enhanced, effects of large shocks is increased.)
- There is an optimal degree of diversification
Uncertainty and amplification

• Assume that there is risk about how the loss is divided.
 ▫ the risk is divided among n countries, $n < n^*$
 ▫ but it is not known which countries.
 ▫ Hence, each country now faces a risk of a loss of $-C$ with probability n/N, where N is the total number of banks.
 ▫ With risk neutrality, the market value of each will be decreased by nC/N
 ▫ With risk aversion, reduction in market value is greater
 ▫ each will find it more difficult to raise capital.
• This in turn will have its own amplification effect: uncertainty can amplify the amplifications
Summary

• Impact of shocks depends on size of shacks, the correlation among the shocks, how the shocks are distributed
• And the architecture of the “network”
• Banking systems evolved into a few concentrated nodes; big noes interlinked
 ▫ Good for absorbing small shocks
 ▫ Bad for systemic risk in the face of large and correlated shocks
Incentives make matters worse

- Large “too-big-to-fail” institutions have an incentive to engage in risk taking
 - Heads I win, Tails you lose
 - But system evolves in towards too-big institutions. Because they are implicitly guaranteed, they can get access to capital at lower rates.
 - In many cases they can become so large that they have market power
 - And even worse, political power—incentive and means to shape regulations
 - Can even become “too big to be held accountable,” to be subject to effective judicial disciplines
• But so also in financial systems with too correlated to fail and too interlinked to fail institutions there are incentives for excessive risk taking
 ▫ There are incentives to be “too interlinked to fail,” “too correlated to fail”
 ▫ Hence market structure that evolves on its own is likely to entail excessive systemic risk
Incentives and information asymmetries make matters worse

- Markets make money out of complexity
 - Create information asymmetries
 - Lack of transparency enhances profits, but erodes systemic performance

- Securitization forced reliance on others to monitor and assess risk
 - And reduced the incentives for originators to monitor risk
 - Created a public good out of information associated with lending
 - But credit rating agencies and investment banks putting together securitization packages had flawed incentives
 - And exploited ignorance/flawed incentive structures of managers of pension and other funds.
 - Who had to maximize returns given the ratings of the rating agencies

- Structured financial products made matters even worse
Further analysis systemic risk

- TREND REINFORCEMENT
- BASCRUPTCY CASCADES
Trend Reinforce

Negative shocks move us down further (equity depletion)

- Modeling using stochastic differential equations, with probability that at any given time an agent goes bankrupt modeled as problem in first passage time
- With trend reinforcement, there is an optimal degree of diversification
Financial interlinkages and bankruptcy cascades

- Bankruptcy cascades (Greenwald and Stiglitz, 2003; Gale and Allen, 2001)
 - The bankruptcy of one firm affects the likelihood of the bankruptcy of those to whom it owes money, its suppliers and those who might depend upon it for supplies; and so actions affecting its likelihood of bankruptcy have adverse effects on others.
- The “architecture” of the credit market can affect the risk that one bankruptcy leads to a sequence of others.
 - If A lends to B, B lends to C and C lends to D, then a default in D can lead to a bankruptcy cascade.
 - On the other hand, if lending all goes through a sufficiently well capitalized clearing house (a bank), then a default by one borrower is not as likely to lead to a cascade.
 - But a very large shock which leads to the bankruptcy of the “clearing house” can have severe systemic effects.
Further externalities are generated as a result of information costs and imperfections.

- If unit i doesn’t fully know other units’ characteristics—including the relationships (contracts) of those with whom it engages in a relationship, including all the relationships with whom those are engaged, *ad infinitum*—it cannot know the risks of their honoring their contract.
- Explains some of adverse effects of non-transparent over the counter credit default swaps
Asymmetric Patterns

• Our canonical model also assumed symmetric relationships in which all ties/contracts were identical.
• In the presence of convexities, such symmetric arrangements often characterize optimal designs.
• But that is not so in the presence of non-convexities, and there are many alternative architectures.
 ▫ For instance, a set of countries (banks) can be tightly linked (a “common financial market”) to each other, but the links among financial markets may be looser. The former is designed to exploit the advantages of risk diversification, the latter to prevent the dangers of contagion.
 ▫ Circuit breakers might be absent in the former but play a large role in the relations among the “common markets.”
• Different architectures may lead to greater ability to absorb small shocks but less resilience to large shocks
Reducing the set of admissible relationships and behaviors can have benefits
 ▫ Reducing the scope for these uncertainties,
 ▫ Reducing the potential for information asymmetries,
 ▫ Reducing the burden on information gathering.
In large non-linear systems with complex interactions, even small perturbations can have large consequences
 ▫ Understanding these interactions major research agenda
Broader research agenda: Design of optimal networks, circuit breakers: optimal degree and form of financial integration
Beginning of large literature
References

Structural Transformation

- Great depression was structural transformation from agricultural to manufacturing—this is a structural transformation from manufacturing to services
 - Productivity growth well in excess of growth in demand
 - Implying decrease in demand
 - If labor gets “trapped” in declining sector, then income will decline
Technical change always can induce large distributive consequences

- Standard models ignore these
- With perfect markets, winners can compensate losers — but they seldom do
- With imperfect markets, decrease in welfare of those in “trapped sector” has spill over effects on others
- And especially if there are efficiency wage effects, there can be adverse macro-economic consequences
Basic model

- Two sectors (industry, agriculture)
 \[\beta \alpha = \beta D^{AA}(p, p\alpha) + E D^{MA}(p, w^*) \]
 \[H(E) = \beta D^{AM}(p, p\alpha) + E D^{MM}(p, w^*) + I \]
- \(\beta \) is the labor force in agriculture, \((1 - \beta)\) is the labor force in industry;
- \(\alpha \) is productivity in agriculture;
- \(D_{ij} \) is demand from those in sector \(i \) for goods from sector \(j \);
- \(w^* \) is the (fixed) efficiency wage in the urban sector;
- \(I \) is the level of investment (assumed to be industrial goods);
- \(p \) is the price of agricultural goods in terms of manufactured goods, which is chosen as the numeraire; and
- \(E \) is the level of employment \((E \leq 1 - \beta)\); and
- where we have normalized the labor force at unity.
Basic results

Theorem 1: If

1) the steady state is stable
2) the income elasticity of the demand for food by rural workers is small enough,
3) c^A (the marginal propensity to consume manufactures by agricultural households) is sufficiently greater than c^M (the comparable marginal propensity to consume of manufacturing households)

then an increase in agricultural productivity unambiguously yields a reduction in the relative price p and in employment in manufacturing.
Results

• The result of mobility-constrained agricultural sector productivity growth is an extended economy-wide slump.

• **Theorem 2**: Under the stability condition, an increase in government expenditure increases urban employment and raises agricultural prices and incomes.

• **Theorem 3**: Under the stability condition an decrease in urban real product wages increases urban unemployment and lowers agricultural prices and incomes.
Note irrelevance of standard model

• Since such structural transformations occur very seldom, rational expectation models are not of much help
• Since the central issue is structural, aggregate model with single sector not of much help
• Since among major effects are those arising from redistribution, a representative agent model is not of much help
• Since central issue entails frictions in mobility, assuming perfect markets is not of much help
• Problems exacerbated by efficiency wage effects
Policy implications

• There should be structural policies to facilitate the movement of labor that is "trapped" in a dying sector
• Even though structural policies are part of the solution, traditional Keynesian policies play a role
 ▫ Contrast to those who are now claiming that most of the remaining unemployment is structural – there is a new "normal" to which we must now accommodate ourselves – and therefore policies designed to stimulate the economy may not only be useless, they may be counterproductive.
• Such policies were at the center of recovery from Great Depression
Reference

Domenico Delli Gatti; Mauro Gallegati; Bruce C. Greenwald; Alberto Russo; Joseph E. Stiglitz, “Sectoral Imbalances and Long Run Crises,” presented to IEA meeting, Beijing, July, 2011.
Concluding Comments

- Old paradigm was “wrong” and policies based on it contributed to Financial Crisis and to the inadequate recovery
- Diversification may make an economy more unstable
- Financial architecture matters
- An economic downturn related to a structural transformation is different from “normal” economic fluctuations
Models matters

- Strong assumptions follow from strong conclusions
- Mathematical assumptions, like convexity, matter
- Networks and frictions matter
- Old analysis was intellectually incoherent—focusing on benefits of interdependency at times, on costs of contagion at others
- Tried to outline a set of models that provide a coherent and better description of what happened
- And that provide the basis of policies that are more likely to lead to better economic performance