An Empirical Study of the Mexican Banking System’s Network and its Implications for Systemic Risk
Martínez-Jaramillo, Alexandrova-Kabadjova, Bravo-Benítez & Solórzano-Margain
Outline

Motivation
 Relevant concepts and literature

Data
 Interbank exposures’ data
 Payment system’s data

Network theory
 Topological and other measures
 Centrality measures

Results

Extended Network of exposures
Interconnectedness

- The GHOS, the oversight body of the BCBS, agreed on a consultative document setting out measures for G-SIBs.

- Measures include:
 - methodology for assessing systemic importance
 - additional required capital
 - arrangements by which they will be phased in

- Objectives:
 - strengthen the resilience of G-SIBs
 - create incentives to reduce systemic importance
Interconnectedness

- Assessment methodology based on an indicator-based approach:
 - size
 - interconnectedness
 - lack of substitutability
 - global (cross-jurisdictional) activity
 - complexity

- Additional loss absorbency requirements are to be met with a progressive CET1 ranging from 1% to 2.5%.

- An additional 1% surcharge would be applied.
Network models and payment systems.

- Studies describing payment systems around the world:
 - Soramki et al. (2006)
 - Bech & Atalay (2008)
 - Becher et al. (2008)
 - Propper et al. (2008)
 - Wetherilt et al. (2010)
Network models and financial contagion.

- Direct contagion through the interbank market widely studied by central banks in several countries, Upper (2007).
 - maximum entropy assumption
 - individual idiosyncratic failures
- Contagion has been studied by simulating networks in Nier et al. (2007) and Gai & Kapadia (2010). They use randomly generated networks.
 - random models use scale free properties which interbank exposures networks exhibit
Network models and systemic risk.

- More recently contagion and systemic risk have been studied:
 - Muller (2006)
 - Babus (2007)
 - Mistrulli (2007)

- Others include contagion within a wider simulation framework:
 - Boss et al. (2006)
 - Aikman et al. (2009)
 - Alessandri et al. (2009)
 - Marquez-Diez-Canedo et al. (2009)
 - Martinez-Jaramillo et al. (2010b & 2010b)
 - Gauthier et al. (2010a & 2010b)
Other Related Works.

- Empirical analysis of the Italian interbank market, Iori et al. (2008)
- Simulation to model interbank lending and study contagion, Iori et al. (2006)
- Coupled stochastic processes, Battiston et al. (2012)
- Cascade processes on networks, Lorenz et al. (2009)
Interbank’s data

- daily data from January 2004 onwards
- a time window contemplating data from the 3rd of January 2005 to 31st December 2010
- comprises deposits and loans, securities, and foreign exchange

Three type of networks:

- Interbank
- Interbank - CLS
- Interbank - FX
SPEI’s data

- daily data from January 2004 onwards
- a time window contemplating data from the 3rd of January 2005 to 31st December 2010

Three types of networks:

- Low value
- Large value
- Total value

Network built accumulating the daily payments between each pair of banks in both directions.
Topological measures

- Topological measures
 - Degree
 - Clustering coefficient
 - Reciprocity
 - Affinity
 - Completeness Index

- Other measures
 - Strength
 - Flow
 - Herfindahl-Hirschman Index (HHI)
 - Preference Index
Centrality measures

- Concept commonly used in social networks
- Several important interpretations
 - power
 - influence
 - independence
 - control
- Characteristics of a relevant financial institution (Henggeler-Muller (2006)):
 - possesses many linkages to other members (degree)
 - Amount of assets, liabilities or flow is very large (strength)
 - its failure could transmit contagion rapidly (closeness)
 - its counterparties are also relevant (eec & pagerank)
 - there are many paths which passes through it (betweenness)
Centrality measures

- **Strength centrality**
 - The sum of its interbank assets and liabilities.

- **Degree centrality**
 - A vertex is more important if it is connected to many other vertices.

- **Betweenness centrality**
 - A vertex with high betweenness centrality can stop or distort the information that passes through it.

- **Closeness centrality**
 - A node with high centrality would depend less on others.
Centrality measures

- Entropic Eigenvector Centrality (Bonacich (1972))
 - Based on Perron’s eigenvector (e^{PF})
 - Considers the relevance of its neighbors.

- PageRank centrality (Page et al. (1999))
 - Based on the Google’s algorithm
 - Considers the centrality of its neighbors.

- A principal components unified measure of centrality
 - different measures equally important
 - preserve most informatino provided by such measures
 - from the policy making perspective, it is important to have only one measure of importance enabling to rank vertices
Scale-free Networks

<table>
<thead>
<tr>
<th>p-value</th>
<th>Interbank</th>
<th>Interbank - CLS</th>
<th>Interbank - FX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< .05</td>
<td>< .1</td>
<td>< .05</td>
</tr>
<tr>
<td>Degree</td>
<td>77%</td>
<td>60%</td>
<td>81%</td>
</tr>
<tr>
<td>In Degree</td>
<td>81%</td>
<td>66%</td>
<td>83%</td>
</tr>
<tr>
<td>Out Degree</td>
<td>80%</td>
<td>60%</td>
<td>80%</td>
</tr>
<tr>
<td>Exposures</td>
<td>57%</td>
<td>50%</td>
<td>63%</td>
</tr>
</tbody>
</table>

Table: Percentage of days in which the exposures network exhibited power law distributions.
SPEI Network

Figure: January the 3rd 2005

Figure: July the 27th 2010

An Empirical Study of the Mexican Banking System’s Network and its Implications for Systemic Risk
Interbank exposures network

Figure: January the 3rd 2005

Figure: December the 31st 2010
An Empirical Study of the Mexican Banking System’s Network and its Implications for Systemic Risk
An Empirical Study of the Mexican Banking System’s Network and its Implications for Systemic Risk
An Empirical Study of the Mexican Banking System’s Network and its Implications for Systemic Risk
An Empirical Study of the Mexican Banking System's Network and its Implications for Systemic Risk
An Empirical Study of the Mexican Banking System's Network and its Implications for Systemic Risk
Interbank

Bank 13’s flow

LPI bank 7

An Empirical Study of the Mexican Banking System’s Network and its Implications for Systemic Risk
An Empirical Study of the Mexican Banking System’s Network and its Implications for Systemic Risk

Figure: Lending HHI bank B

<table>
<thead>
<tr>
<th></th>
<th>Interbank</th>
<th>Interbank - CLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Size</td>
<td>26.7</td>
<td>26.7</td>
</tr>
<tr>
<td>Completeness Index</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Average Degree</td>
<td>9.0</td>
<td>8.7</td>
</tr>
<tr>
<td>Reciprocity</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Average Distance</td>
<td>1.7</td>
<td>1.8</td>
</tr>
<tr>
<td>Total Arcs</td>
<td>279.7</td>
<td>262.2</td>
</tr>
<tr>
<td>Average Strength*</td>
<td>7.1</td>
<td>6.4</td>
</tr>
<tr>
<td>Total Volume*</td>
<td>125.5</td>
<td>110.8</td>
</tr>
</tbody>
</table>
Interbank’s centrality

Figure: Principal components centrality
Pairwise correlations

- Degree vs. Strength
- Degree vs. Closeness
- Degree vs. Betweenness
- Degree vs. PageRank
- Degree vs. EEC
- Strength vs. Closeness
- Strength vs. Betweenness
- Strength vs. PageRank
- Strength vs. EEC
- Closeness vs. Betweenness
- Closeness vs. PageRank
- Closeness vs. EEC
- Betweenness vs. PageRank
- Betweenness vs. EEC
- PageRank vs. EEC
SPEI’s centrality

Figure: Low vs large centrality bank C

Figure: Low vs large centrality bank D

An Empirical Study of the Mexican Banking System’s Network and its Implications for Systemic Risk
Interbank’s centrality

Figure: Changes in ranking for banks A & B

Figure: Changes in behavior bank C
PC centrality ranking vs. Asset size ranking
Congruence: Low value vs. Large value network

<table>
<thead>
<tr>
<th>Number of banks</th>
<th>Top 1</th>
<th>Top 3</th>
<th>Top 10</th>
<th>Average Overlapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>0.53</td>
<td>0.97</td>
<td>0.97</td>
<td>0.70</td>
</tr>
<tr>
<td>28</td>
<td>0.60</td>
<td>1.00</td>
<td>1.00</td>
<td>0.69</td>
</tr>
<tr>
<td>29</td>
<td>0.48</td>
<td>1.00</td>
<td>1.00</td>
<td>0.68</td>
</tr>
<tr>
<td>30</td>
<td>0.58</td>
<td>1.00</td>
<td>1.00</td>
<td>0.64</td>
</tr>
<tr>
<td>31</td>
<td>0.57</td>
<td>1.00</td>
<td>1.00</td>
<td>0.58</td>
</tr>
<tr>
<td>32</td>
<td>0.52</td>
<td>1.00</td>
<td>1.00</td>
<td>0.61</td>
</tr>
<tr>
<td>33</td>
<td>0.33</td>
<td>1.00</td>
<td>1.00</td>
<td>0.67</td>
</tr>
<tr>
<td>35</td>
<td>0.62</td>
<td>1.00</td>
<td>1.00</td>
<td>0.63</td>
</tr>
<tr>
<td>36</td>
<td>0.62</td>
<td>1.00</td>
<td>1.00</td>
<td>0.68</td>
</tr>
<tr>
<td>37</td>
<td>0.60</td>
<td>0.98</td>
<td>0.98</td>
<td>0.62</td>
</tr>
<tr>
<td>38</td>
<td>0.26</td>
<td>1.00</td>
<td>1.00</td>
<td>0.64</td>
</tr>
<tr>
<td>39</td>
<td>0.43</td>
<td>0.94</td>
<td>0.94</td>
<td>0.62</td>
</tr>
<tr>
<td>40</td>
<td>0.51</td>
<td>1.00</td>
<td>1.00</td>
<td>0.60</td>
</tr>
<tr>
<td>41</td>
<td>0.52</td>
<td>0.98</td>
<td>0.98</td>
<td>0.58</td>
</tr>
</tbody>
</table>
Congruence: Exposures vs. payments network

<table>
<thead>
<tr>
<th>Number of banks</th>
<th>Top 1</th>
<th>Top 3</th>
<th>Top 10</th>
<th>Average Overlapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>0.16</td>
<td>1.00</td>
<td>1.00</td>
<td>0.73</td>
</tr>
<tr>
<td>28</td>
<td>0.12</td>
<td>0.98</td>
<td>0.98</td>
<td>0.76</td>
</tr>
<tr>
<td>29</td>
<td>0.12</td>
<td>1.00</td>
<td>1.00</td>
<td>0.74</td>
</tr>
<tr>
<td>30</td>
<td>0.36</td>
<td>1.00</td>
<td>1.00</td>
<td>0.70</td>
</tr>
<tr>
<td>31</td>
<td>0.27</td>
<td>0.97</td>
<td>0.97</td>
<td>0.60</td>
</tr>
<tr>
<td>32</td>
<td>0.23</td>
<td>0.98</td>
<td>0.98</td>
<td>0.64</td>
</tr>
<tr>
<td>33</td>
<td>-</td>
<td>1.00</td>
<td>1.00</td>
<td>0.77</td>
</tr>
<tr>
<td>35</td>
<td>-</td>
<td>1.00</td>
<td>1.00</td>
<td>0.71</td>
</tr>
<tr>
<td>36</td>
<td>0.15</td>
<td>1.00</td>
<td>1.00</td>
<td>0.71</td>
</tr>
<tr>
<td>37</td>
<td>0.12</td>
<td>0.97</td>
<td>0.97</td>
<td>0.69</td>
</tr>
<tr>
<td>38</td>
<td>0.05</td>
<td>1.00</td>
<td>1.00</td>
<td>0.72</td>
</tr>
<tr>
<td>39</td>
<td>0.15</td>
<td>0.92</td>
<td>0.92</td>
<td>0.64</td>
</tr>
<tr>
<td>40</td>
<td>0.27</td>
<td>0.98</td>
<td>0.98</td>
<td>0.68</td>
</tr>
<tr>
<td>41</td>
<td>0.03</td>
<td>0.98</td>
<td>0.98</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Average correlations\(^1\) on rankings

<table>
<thead>
<tr>
<th></th>
<th>Exposures vs. Payments</th>
<th>Low vs. Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum</td>
<td>0.77</td>
<td>0.65</td>
</tr>
<tr>
<td>Minimum</td>
<td>-0.29</td>
<td>-0.38</td>
</tr>
<tr>
<td>Average</td>
<td>0.25</td>
<td>0.06</td>
</tr>
</tbody>
</table>

\(^1\)Correlations were computed for the largest time-window when the number of banks was constant at 40.
Extended network
Figure: Exposures by type of exposure
Figure: Exposures by type of intermediary
Figure: Exposures by region of the counterpart
Loans

Figure: Loans by region of the counterpart
Net exposures

Figure: Net Exposures
Over-Exposure for Banks

Figure: Number of banks which are overexposed
Over-Exposure for Brokerage houses

Figure: Number of brokerage houses which are overexposed
Over-exposure and contagion I

Figure: Original Network.
Over-exposure and contagion II

Figure: Network after the initial shock.
Over-exposure and contagion III

Figure: Network after contagion.
Over-exposure and contagion IV

![Chart showing over-exposure and contagion before and after a shock. The chart uses different colors to represent different categories of exposure.](chart.png)
Stress testing conceptual framework

After contagion

…… After the shock

Scenario generator

\[
\begin{pmatrix}
\text{esc}_1 \\
\text{esc}_2 \\
\vdots \\
\text{esc}_{n}
\end{pmatrix}
\]

RiskWatch

\[
\begin{pmatrix}
\ell_{0, \text{esc}_k} \\
\ell_{1, \text{esc}_k} \\
\vdots \\
\ell_{r, \text{esc}_k}
\end{pmatrix}
\]

Contagion phase

Loss distribution

After contagion

…… After the shock

Figure : Banco de Mexico stress testing framework.
What to do when there is no supervisory data

Figure: Adrian and Brunnermeier CoVaR network.
Summary

- The payments system network is more connected than the interbank exposures network.
- Importance in the payments network is different than in the exposures network.
- The unified centrality measure can be employed on the methodology proposed by the BCBS to determine G-SIBs.
- Bank’s importance changes depending on the type of payment and depending if they are acting as lenders of borrowers.
- Bank’s behavior can change over time.
- Determining systemic importance based only on asset’s size could be misleading.
- Most centrality measures are robust.
- Topology of the network is not enough to characterize systemic importance.
Future work:

- Network formation models
- Studying other financial networks, like the securities settlement network
- Bank’s behavior in distress
- Bank’s funding strategies
- Link to economic variables
Thanks

Thank you!