Credit and Endogenous Growth in an Agent-Based Model with Locally Interacting Agents

Panaro D.1, Mastrorillo M.2, Ferraresi T.1, Fagiolo G.3 and Roventini A.3,4,5,6

1University of Pisa, 2University of Foggia, 3Sant’Anna School of Advanced Studies, 4University Paris Ouest Nanterre La Defense, 5OFCE, Sciences Po, 6University of Verona

2012 Latsis Symposium Satellite Workshop
Sept. 11th, ETH Zurich
Motivations

- Research questions:
 1. Does finance promote or hinder long-run economic growth?
 2. Do alternative credit-market structures lead to more or less growth?
 3. Credit markets and the trade off between growth and volatility

- Mainstream literature (Aghion and Howitt [2009]; Levine [2005]; Freixas and Rochet [2008]):
 1. Finance appears to foster growth
 2. No deep investigation of the relation between different markets structures and growth
 3. Mixed results on the growth-volatility

- Agent-based models (ABMs) provide a promising framework to address the link between finance and growth (interactions, bounded rationality, disequilibrium; e.g. Dosi, Fagiolo, Napoletano and Roventini [2012])
Aims

- Extend the "island" (endogenous-growth) model in Fagiolo and Dosi (2003) to allow for credit;
- Analyzing whether the exploration-exploitation trade-off is still present in the credit-augmented "island" model;
- Investigating how credit markets affect firm innovation and imitation patterns and in turn long-run growth;
- Studying how different hypotheses about credit market structure, attitudes towards risk and credit constraints affect output growth and volatility;
Related Literature

- **Early contributions:**
 - Gurley and Shaw (1955); Goldsmith (1969)

- **"Classical" literature:**
 - Greenwood and Jovanovic (1990); King and Levine (1993); Galor and Zeira (1993); Aghion, Banerjee and Piketty (1999)

- **Multisector Schumpeterian endogenous growth models with financial constraints (Aghion and Howitt [2009], ch. 6):**
 - Ex ante screening
 - Ex post monitoring and moral hazard
 - Inequality
 - Productivity differences

- **Agent-based models of growth and business cycles:**
 - Dosi, Fagiolo, Napoletano and Roventini (2012);
 - Gaffeo, Delli Gatti, Gallegati, Desiderio and Cirillo (2011)
Basic Model: The island model (Fagiolo and Dosi, 2003)

- Endogenous growth model in which heterogeneous firms are modeled as boundedly-rational, locally interacting agents.
- Technologies ("islands") are located in an open-ended technological space (2-dim lattice).
- Each node of the lattice can be empty or contain an island.
- Firms may produce a homogeneous good (GDP), imitate other technologies or move across the technological space (explore).
- Firms constantly look for better technologies under strong uncertainty and direct spillovers.
What firms do

- **Production:** agents (miners) settle on an island and produce the homogenous good according to:
 \[q_{j,t}^i = s(x_j, y_j) \left[m_t(x_j, y_j) \right]^{\alpha-1} \]

- **Exploration (R&D activity):** agents become explorers with probability \(\varepsilon \) and they stop when they find an "island".

- **Innovation:** the productivity of a newly discovered island is:
 \[s^* = s(x^*, y^*) = (1 + W)(|x^*| + |y^*| + \varphi q_{i,t} + \xi) \]

- **Imitation:** Each island \(j \) sends a signal about its productivity. The agents around can receive the signal with probability proportional to the intensity of the signal and decreasing with source-receiver distance:
 \[\omega_t(x_j, y_j; x, y) = \frac{m_t(x_j, y_j)}{m_t} \exp\{-\rho[|x - x_j| + |y - y_j|]\}, \rho \geq 0, \]
 and decide whether to become imitators.
Beyond the basic model I

- Introduction of consumption and savings
- Introduction of costs of R&D and imitation activities
- Introduction of credit market with different specifications about credit-market structure, credit constraints and banks’ attitudes towards risk
- In particular, to account for heterogeneity of credit markets, three different versions of the model have been explored:
 1. Autarchy
 2. Many saving banks (one for each island)
 3. Monopolistic bank
Beyond the basic model II

- At each time t, all miners consume a fraction c of their own output $q_{j,t}$
- Banks collect miners savings
- The cost of sailing activities (R&D and imitation) is $s_j m_{t,j}^{\eta+(\alpha-1)}$, where η governs agglomeration economies, i.e. how the number of miners on the island affects the cost of exploration/imitation
- Agents finance their exploration activities using their own savings or (if necessary) apply for a loan to the bank
- Under different pecking-order rules, the bank allocates credit to agents:
 - the imitation projects are risk-free and the amount of loan needed is known
 - Innovation is uncertain because they can fail during the research. The expected research time for new island is: $\tau = 1/\pi$
- When and if the agents reach the (imitated or new) island, they pay back their debts
We employ empirical evidence to microfound bank decision rules, in particular:

1. Theoretical justification of credit multiplier (Aghion, Banerjee and Piketty [1999])
2. Empirical evidence about credit constraints and R&D decisions (Hall [2002])
Bank decisions rules II

- At time t, bank deposits are equal to:

$$L_{j,t} = \sum_{i \in J_t} (1 - c) y_{i,t}^j + \sum_{i \in J_t} R_{i,t}^j$$

where $y_{i,t}^j$ is agent i output at time t, $R_{i,t}^j$ is the amount of agent i savings and J_t is the set of agents currently on island j.

- Banks lend to each borrower up to

$$(1 - \Delta) y_{i,t}^j$$

where $(1 - \Delta)$ is a credit multiplier à la Aghion, Banerjee and Piketty (1999).

- In line with the credit multiplier, banks hold precautionary reserves.
Bank decisions rules III

- Banks employ different pecking-order rules
- Debtors must refund their loans plus an interest rate
- If an explorer runs out of resources during the exploration, she goes bankrupt and she is replaced by a new agent on the island from which she started and the bank loses the capital lent
- If a bank goes bankrupt, the agents on the island divide equally the savings left and a new bank is immediately recreated
Financial and R&D scenarios:

- We compare three different financial setups:
 1. Autarchy
 2. Many saving banks (one for each island)
 3. Monopolistic bank

- We analyze three different pecking order rules:
 1. Risk-averse banks prefer imitator to explorer
 2. Risk-lover banks finance before explorers then imitators in decreasing order according to their savings
 3. Risk-neutral banks finance agents according to their savings

- We compare two different R&D setups for different returns-to-scale (α) regimes:
 1. Exploration-oriented (low R&D costs and high willingness to explore)
 2. Imitation-oriented (high R&D costs and low willingness to explore)
Parameters:

- \(N = 100 \)
 number of agents

- \(T = 1000 \)
 length of simulations

- \(\alpha = 1.5, 2, 2.5 \)
 returns to scale

- \(\epsilon = 0.1, 0.4 \)
 willingness to explore

- \(\eta = -0.5, 0.5 \)
 agglomeration economies

- \(\rho = 0.01 \)
 degree of local interactions

- \(\varphi = 0.4 \)
 degree of knowledge accumulation

- \(\lambda = 5 \)
 likelihood of radical innovation

- \(\pi = 0.4 \)
 technological opportunities

- \(s = 0.3 \)
 propensity to save

- \(1 - \Delta = 3 \)
 credit multiplier

- \(\chi = 0.3 \)
 precautionary reserves coefficient

- \(\mu = 0.01; \nu = 0.05 \)
 imitators and explorers interest rates
Preliminary results I

Does the exploitation-exploration trade-off emerge also in the credit-augmented "island model"?

- As in the basic "island" model, also in the credit-augmented model there exists an "optimal" level of exploration.

Note: Many saving banks scenario with risk-neutral banks; $\alpha = 2, \eta = -0.1$. 95% confidence MC intervals shown.
Preliminary results II

Does finance promote long-run economic growth?

- Setups with banks perform better than 'autarchy' set up
- Growth-rate differences between bank and autarchy scenarios are significantly positive under different parameterizations

<table>
<thead>
<tr>
<th>(α, ϵ, η)</th>
<th>$agr_{many} - agr_{aut}$</th>
<th>$agr_1 - agr_{aut}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1.5, 0.1, -0.1)$</td>
<td>0.0106**</td>
<td>0.0050</td>
</tr>
<tr>
<td>$(1.5, 0.4, 0.1)$</td>
<td>0.0044</td>
<td>0.0434**</td>
</tr>
<tr>
<td>$(2.0, 0.1, -0.1)$</td>
<td>0.0734**</td>
<td>0.0886**</td>
</tr>
<tr>
<td>$(2.0, 0.4, 0.1)$</td>
<td>0.0396**</td>
<td>0.0283**</td>
</tr>
<tr>
<td>$(2.5, 0.1, -0.1)$</td>
<td>0.0887**</td>
<td>0.0831**</td>
</tr>
<tr>
<td>$(2.5, 0.4, 0.1)$</td>
<td>0.0233**</td>
<td>-0.0215</td>
</tr>
</tbody>
</table>

Note: **= significant at 5% using Montecarlo standard errors

- Results are robust to the risk-attitude of banks
Preliminary results III

Does higher average long-run growth imply more volatility?
► Strong positive correlation between growth and volatility

Note: MC AGR; colors represent different parameterizations for \((\alpha, \epsilon, \eta)\) within each scenario
Preliminary results IV

Does credit-market structure affect growth?

- In general, long-run average-growth rates are not statistically different in the "many saving banks" (many) and "monopolistic bank" (1) scenarios.

<table>
<thead>
<tr>
<th>(α, ϵ, η)</th>
<th>Adverse Banks $agr_1 - agr_{many}$</th>
<th>Neutral Banks $agr_1 - agr_{many}$</th>
<th>Risky Banks $agr_1 - agr_{many}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1.5, 0.1, -0.1)</td>
<td>0.0004</td>
<td>-0.0084</td>
<td>-0.0056</td>
</tr>
<tr>
<td>(1.5, 0.4, 0.1)</td>
<td>0.0477**</td>
<td>0.0215**</td>
<td>0.0390**</td>
</tr>
<tr>
<td>(2.0, 1, -0.1)</td>
<td>-0.0117</td>
<td>-0.0154</td>
<td>0.0152</td>
</tr>
<tr>
<td>(2.0, 0.4, 0.1)</td>
<td>0.0028</td>
<td>0.0117</td>
<td>-0.0113</td>
</tr>
<tr>
<td>(2.5, 0.1, -0.1)</td>
<td>-0.0433</td>
<td>-0.0394</td>
<td>-0.0056</td>
</tr>
<tr>
<td>(2.5, 0.4, 0.1)</td>
<td>-0.0481</td>
<td>-0.0661**</td>
<td>-0.0448**</td>
</tr>
</tbody>
</table>

- Significant differences do not appear to be systematic.
- Exploring more realistic credit-market structures...
Further Work

- Exploring setups similar to those studied in Diamond (1984), wherein banks are given the choice to monitor R&D activity to avoid free-rider problems
- Allowing for bank heterogeneity in their pecking order rules
- Introducing time lag for the creation of a new bank after a bankruptcy episode
- Introducing bankruptcy costs as in Greenwald and Stiglitz (1993)