Financial Linkages, Macroprudential Policy, and Systemic Risk

Co-Pierre Georg
Deutsche Bundesbank
and
Oxford University

Latsis Symposium "Economics on the Move"
Zurich, 13 September 2012

1Joint work with Silvia Gabrieli, Banque de France. The views expressed are not necessarily those of Deutsche Bundesbank or Banque de France.
Two dimensions of systemic risk

1. Systemic risk slowly builds in tranquil times and abruptly unravels in times of crisis
 ⇒ time-dimension

2. Systemic risk can be transmitted through various channels
 ⇒ cross-sectional dimension

Systemic risk channels:
- common shocks: Acharya and Yorulmazer (2008)
- informational spillovers: Acharya and Yorulmazer (2008b), Nier et al. (2007)
 Ahnert and Georg (2012)
Four reasons why modelling systemic risk is a challenge for economists:

1. **Heterogeneous agents** → No representative agent(s)

2. Complex interactions

3. Dynamic structural change

4. Deviations from rationality
Financial Intermediaries are Heterogeneous

Figure: Concentration of the UK and US banking system. Source: Gai, Haldane and Kapadia (2011).
Modelling Systemic Risk is a Challenge

Four reasons why modelling systemic risk is a challenge for economists:

1. Heterogeneous agents
2. Complex interactions \rightarrow incomplete markets
3. Dynamic structural change
4. Deviations from rationality
Figure: A scale-free network \((k = 4)\) of contracts amongst 50 banks.
Four reasons why modelling systemic risk is a challenge for economists:

1. Heterogeneous agents
2. Complex interactions
3. **Dynamic structural change** → Processes on different time scales
4. Deviations from rationality
The Financial System is Highly Interconnected

Figure: Interconnectedness of the international banking network in 1980 (left) and 2007 (right). Source: Minoiu and Reyes (2011) using BIS data.
Modelling Systemic Risk is a Challenge

Four reasons why modelling systemic risk is a challenge for economists:

1. Heterogeneous agents
2. Complex interactions
3. Dynamic structural change
4. **Deviations from rationality** → Agent behaviour matters
Modelling Systemic Risk is a Challenge

Four reasons why modelling systemic risk is a challenge for economists:

1. Heterogeneous agents
2. Complex interactions
3. Dynamic structural change
4. Deviations from rationality

Multi-Agent Simulations can help understand systemic risk
Figure: The building blocks for a simulation of the financial system
Figure: The building blocks for a simulation of the financial system
Microfoundations of Banks Determine Model

- Liabilities: D, L, LC, BC
- Assets: I, E, L
- Households
- Commercial Banks
- Central Bank
- Firms

λ
Agent Behaviour (and Model Dynamics)

- Banks optimize their **portfolio structure and -volume** according to CRRA preferences

\[u = \frac{1}{1 - \theta} \left(V(1 + \lambda \mu - \frac{1}{2} \theta \lambda^2 \sigma^2) \right)^{(1-\theta)} \]

where \(\theta \) is risk-aversion parameter, \(\mu \) and \(\sigma^2 \) expected return and variance of risky assets

- **Deviation from Rationality**: agents become more (less) risk averse if there are (no) bank defaults in previous period

\[\Rightarrow \text{Information Contagion} \]

Possible extensions:

- Bayesian updating for expected return and variance of real (and financial) assets

- Agent behaviour is key: alternative implementation with risk neutral agents (see e.g. Baltensperger (2002))
Figure: The first part of the update algorithm.
Figure: The second part of the update algorithm.
Model Dynamics – The Update Algorithm

Figure: The third part of the update algorithm.
Model Parameters

Upside: model is very flexible – 26 parameters
Downside: model will be hard to calibrate (if at all possible)

<table>
<thead>
<tr>
<th>Parameter type</th>
<th>Parameter name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation</td>
<td>numSweeps, numSimulations, numBanks, contractsNetworkFile, shockType, liquidationDiscountFactor, riskAversionDiscountFactor, riskAversionAmplificationFactor</td>
</tr>
<tr>
<td>Interest rates</td>
<td>rb, rd</td>
</tr>
<tr>
<td>Central bank</td>
<td>collateralQuality</td>
</tr>
<tr>
<td>Firm</td>
<td>successProbabilityFirms, positiveReturnFirms, firmLoanMaturity, assetNumber</td>
</tr>
<tr>
<td>Household</td>
<td>scaleFactorHouseholds</td>
</tr>
<tr>
<td>Bank</td>
<td>dividendLevel, successProbabilityBank, positiveReturnBank, thetaBank, xiBank, interbankLoanMaturity</td>
</tr>
<tr>
<td>Regulation</td>
<td>r, sifiSurchargeFactor, leverageRatio, requiredCapitalRatio</td>
</tr>
</tbody>
</table>

Table: Overview of model parameters
Channels of Systemic Risk

Interbank contagion

- Interbank contagion is a source of systemic risk, but not the major one.

Fire-sale

- Common shocks are quantitatively the greater threat.
- Fire-sales can be caused by cash-in-the-market pricing:

\[p(\gamma, t, l(t)) = \exp\left(-\gamma \cdot \frac{(l(0) - l(t) + l(t))}{l(0)}\right) \]

where \(\gamma\) is the liquidationDiscountFactor.

Information contagion

- Risk aversion \(\theta\) depends on history of loan repayments.
Endogenous Fire Sales – No Information Contagion

Figure: Number of active banks over time for different strengths of fire sales.
Information Contagion – No Fire Sales

Figure: Investment level over time for different strengths of risk aversion discount and amplification.
Macroprudential Tools to Alleviate Systemic Risk

A number of tools has been proposed to alleviate systemic risk:

- **Time-dimension:** countercyclical capital buffer, leverage ratio, dynamic risk-weights, dynamic provisioning, liquidity ratios: LCR, NSFR, reserve requirements

- **Cross-sectional dimension:** higher capital requirements, concentration limits, SIFI surcharge

How these measures are implemented:

- **LCR:** highly liquid assets → limit on liquidationDiscountFactor
- **NSFR:** stable funding sources → limit on scaleFactorHouseholds
- Countercyclical capital buffer → varying required capital during simulation
- Leverage ratio → limit on portfolio expansion when banks are euphoric
- SIFI surcharge → additional capital requirements based on interconnectedness
Figure: Number of active banks over time with a countercyclical capital buffer.
Figure: Amount of interbank lending over time with countercyclical capital buffer.
Leverage Ratio

Figure: Investment in risky assets over time for different leverage ratios.
Is a SIFI Surcharge Better than Higher Capital Ratios?

Figure: The effect of a SIFI surcharge vs. a flat increase in capital requirements.
Conclusion

- Heterogeneous agents, complex interactions, and dynamic structural change calls for a more flexible set of models ⇒ Multi-Agent Network Models

- Network models to assess systemic risk can be used to analyse recently proposed macroprudential measures:

- Going forward: consistent agent behaviour and clear notion of equilibrium
Heterogeneous agents, complex interactions, and dynamic structural change calls for a more flexible set of models ⇒ Multi-Agent Network Models

Network models to assess systemic risk can be used to analyse recently proposed macroprudential measures:

Going forward: consistent agent behaviour and clear notion of equilibrium

All simulations done with black rhino: open source MAS
http://cabdyn.ox.ac.uk

⇒ Thank you!