• To address whether economic research can benefit from concepts, theories and methodologies of other disciplines.
• Latsis Symposium 11-14. Sep. 2012, ETH, Switzerland

• Measurement & Internalization of Systemic Risk in Global Banking (& CCP Clearing) Networks

Beom Jun Kim, Department of Physics, SKK. Korea
Haibo Hu, Complex System Lab, Shanghai Jiaotong University
Matthew Pritsker, Federal Reserve of Boston
Objectives

• 1. To measure the systemic risk of each country in the network

• 2. To allocate it to the country that generates it according to the “contribution” made in terms of capital charges.

3. To assess the fragility of the global bank network
Systemic Risk

• Three key elements:

- Domino Effect
- Contagion
- Systemic Important Institutes

Source: Oxford Banking Dictionary, 2010
Two Sources of Literature

• 1. Portfolio Approach versus
• 2. Complex System Approach
1. Portfolio Approach

• 1) Early study: to identify contagion after controlling the fundamental common factors
• 2) Treat banks as asset portfolio using option pricing model
• 3) Recent study: non-parametric estimation, extreme value theory, VAR
Three Problems need to be Addressed

• Emphasis on the magnitude of a bank not so much on the connectivity
• Limited sample
• Limited common factors
2. Complex System Approach

• 1) Early study: complete structure & incomplete structure
 (Allen Franklin & Douglas Gale)

• 2) Identify more complex topology of specific markets

• 3) Extensive research on systemic risk
Two Problems need to be Addressed

- Emphasis on topology without dynamics
- Application of complex theory
Construction of A Global Bank Network

Data: Bankscope

• 30,000 from 2009 to 2011
• consolidated & unconsolidated balance sheet

Information used:

• branches and subsidiaries
• “ownership” category
Yifan Hu algorithm in Gephi
Communities identified (2008 V. Blondel et al algorithm)
Measurement of Systemic Risk

\[
\begin{align*}
\frac{dI_k(t)}{dt} &= -\mu I_k(t) + \lambda k S_k(t) \Theta(\lambda, t) \\
\frac{dS_k(t)}{dt} &= -\lambda k S_k(t) \Theta(\lambda, t) + \mu I_k(t) \\
S_k(t) &= 1 - I_k(t) \\
I_k(0) &= I_k^0
\end{align*}
\]
Different meaning of “Virus” in Banking Network

• Virus = Default
 Default is situation that banks are unable to observe their debt obligations or service their liabilities.

• Major Reason: liquidity shortage

• Link = a transaction between bank A and B
Crisis Outbreak Threshold λ_c

• A Topology related Threshold:

 $\lambda_c = \langle K \rangle / \langle K^2 \rangle$, for scale free network

 $\lambda_c = 1 / \langle K \rangle$, for regular network
Internalization of Systemic Risk

• Shapley-Value: cooperative game

• A bank network that has n banks will consist of 2^n subsystem which are: \emptyset, {1},{2}...{n},{1,2},{1,3}...{n-1,n}...{1,2...n}.

A case of 3 banks:

• $SV(bank_1) = \frac{1}{6} \{ 2^*[\Phi\{1\}-0] + [\Phi\{2,1\}-\Phi\{2\}] + [\Phi\{3,1\}-\Phi\{3\}] + 2^*[\Phi\{2,3,1\}-\Phi\{2,3\}] \}$

A general formula:

$$SV_i(\Sigma) = \frac{1}{n} \sum_{n_s=1}^{n} \frac{1}{C(n_s)} \sum_{s \supseteq i, |s|=n_s} [\Phi(s) - \Phi(s-\{i\})]$$
The Challenge

1. The SV of the subsystem
 • Largest component or average

2. The topology of the remaining network may change,
 • Kolmogorov-Smirnov tests
SV
Objectives

• 1. To measure the systemic risk of each country

• 2. To allocate it to the country that generates it according to the "contribution" made in terms of capital charges.

• 3. To assess the fragility of the global bank network
Capital Charges

- The Capital Charge is an instrument to curb systemic risk by regulators
- Conversion from SV to the Capital Charge
Holling Type Two Function
Capital Charges

• Holling Type two Function

• Capital Charge =
 \[SV(\lambda c)^n / (1+SV(\lambda c)^n) \]
• Where \(n=1,2\ldots N \)
Country Level Capital Charges

![Graph showing Capital Charges for various countries]
Comparison
Objectives

1. To measure the systemic risk of each country
2. To allocate it to the country that generates it according to the “contribution” made in terms of capital charges.
3. To assess the fragility of the global bank network
First Experiment- Sequential Shocks

• **The original shock** which has caused liquidity problem of targeted country and withdrawal of banks from overseas

• **The induced shock** which has caused re-location of banks that link to the original crisis-attacked-banks
The Number of Banks without Shocks: $6+5+1=12$
The Number of Banks with Shocks: $3+3+1=7$

1 Round (original): A is reduced by half;
2 Round (induced): B,C are reduced by half

- A
- B
- C

B

C

0

1

2

1

2

1

2
Withdrawal Strategies

• “Gradualism” versus “Big Bang”

• In this research, “Gradualism” = withdraw half of a bank’s assets in the crisis-shocked country
Rewiring Strategies

• The new targeted country can be chosen by two strategies: new territory development strategy and clustering strategy

• If there are more than one countries that the withdrawal capital can be relocated to, then random strategy is followed
Second Experiment
-Directional Shocks

- Out-degrees versus in-degree
- Why it is important?
 Export or import financial service products
 Two strategies for a nation’s economic development:
 1) “Export promotion”
 2) “Import substitution”
The Impact Factor

\[I_i^{(1)} \equiv B_i^{(0)} - B_i^{(1)}, \]
\[I_i^{(2)} \equiv B_i^{(1)} - B_i^{(2)}. \]

• In terms of out-degree (strength) and
• in-degree (strength),
Conclusions

• 1. Constructed a global banking network
• 2. Evaluated the country level systemic risk and suggest capital charges for regulation (Combine individual risk control policy with the systemic risk control policy)
• 3. Sequential shocks have different impacts on countries. Export oriented countries need to prepare more “capital cushion”
Current research

• Optimal Structure of a Financial Clearing System,
• Focus on Interoperability Central Counterparty System
• Basic reproduction number in epidemic spreading model